กิจกรรม 24 - 28 มกราคม 2554 คะแนน 100 คะแนน




 ตอบ 3.
วิเคราะห์ข้อมูล : : 
พลาสติกโดยทั่วไปแบ่งออกเป็น 2 ประเภท คือ
1.เทอร์โมพลาสติก (Thermoplastic = T.P)
เป็นพลาสติกที่หลอมเหลวได้ง่าย อ่อนตัวเมื่อถูกความร้อน และแข็งตัวเมื่อเย็นลง มีโครงสร้างแบบสายยาว พลาสติกประเภทนี้สามารถนำมาหลอมและขึ้นรูปใหม่ได้อีก ตัวอย่างของพลาสติกประเภทนี้ได้แก่ โพลีเอททีลีน (Polyethylene : PE) โพลีโพรพิลีน (Polypropylene : PP) โพลีสไตลีน (Polystyrene : PS) โพลีไวนิลคลอไรด์ (Polyvinylchloride : PVC) โพลีเอททีลีน เทเรฟทาเลต (Polyethylene Terephalate : PET OR PETE)

 


2.เทอร์โมเซตติ้ง (Thermosetting = T.S)
เป็นพลาสติกที่คงรูปภายหลังจากการผ่านความร้อน หรือแรงดันเพียงครั้งเดียว เมื่อเย็นลงจะแข็งตัวมีความแข็งแรงมากทนความร้อนและความดัน ไม่อ่อนตัวและเปลี่ยนรูปร่างไม่ได้ แต่ถ้าอุณหภูมิสูงพอก็จะแตกและไหม้เป็นขี้เถ้าสีดำ มีโครงสร้างเชื่อมโยงกันเป็นร่างแหจับกันแน่น พลาสติกประเภทนี้ไม่สามารถนำมาหลอมเพื่อใช้ใหม่ได้ ตัวอย่างของพลาสติกประเภทนี้ ได้แก่ โพลียูริเทน (Polyurethane) อีพอกซี่ (Epoxy) ฟีโนลิค (Phenolic) เมลามีน (Melamine
การกำจัดขยะพลาสติก
การกำจัดขยะพลาสติกสามารถทำได้หลายวิธี เช่น การนำไปฝัง (Burial) หรือนำไปถมดิน (Landfill) การนำไปเผาเป็นเชื้อเพลิง (Incineration) และการนำกลับมาใช้ใหม่ (Recycle) อย่างไรก็ตาม การนำพลาสติกกลับมาใช้ใหม่โดยทั่วไปแล้วถูกพิจารณาว่า เป็นทางเลือกที่ให้ประโยชน์ต่อสิ่งแวดล้อมมากที่สุดทางหนึ่ง ในการแก้ไขปัญหาขยะพลาสติกในประเทศไทยจะต้องอาศัยความร่วมมือจากทุกฝ่าย ซึ่งทาง บริษัท พลาสท์โปร จำกัด ขอเป็นส่วนร่วมอีกทางหนึ่งในการแก้ไขปัญหาขยะพลาสติก เพื่อช่วยให้ประเทศไทยน่าอยู่ มีสภาพสิ่งแวดล้อมที่ดี และเก็บไว้ให้เป็นมรดกแก่ลูกหลานสืบต่อไป
ที่มา : : http://www.lg-plus.com/plastpro/index_plastpro.html




 ตอบ 1.
วิเคราะห์ข้อมูล : :
การถ่ายโอนพลังงานความร้อน เป็นการถ่ายเทพลังงานความร้อนระหว่างที่สองแห่งที่มีอุณหภูมิแตกต่างกัน วิธีการถ่ายโอน พลังงานความร้อนแบ่งได้เป็น 3 วิธี ดังนี้
1. การถ่ายโอนความร้อนโดยการนำความร้อน เป็นการถ่ายโอนความร้อนโดยความร้อนจะเคลื่อนที่ไปตามเนื้อของวัตถุจากตำแหน่งที่มีอุณหภูมิสูงไปสู่ตำแหน่งที่มีอุณหภูมิต่ำกว่า โดยที่วัตถุที่เป็นตัว
กลางในการถ่ายโอนความร้อนไม่ได้เคลื่อนที่ เช่น การนำแผ่นอะลูมิเนียมมาเผาไฟ โมเลกุลของแผ่นอะลูมิเนียมที่อยู่ใกล้เปลวไฟจะร้อนก่อนโมเลกุลที่อยู่ไกลออกไป เมื่อได้รับความร้อนจะสั่นมากขึ้นจึงชนกับโมเลกุลที่อยู่ติดกัน และทำให้โมเลกุลที่อยู่ติดกันสั่นต่อเนื่องกันไป ความร้อนจึงถูกถ่ายโอนไปโดยการสั่นของโมเลกุลของแผ่นอะลูมิเนียม
โลหะต่างๆ เช่น เงิน ทอง อะลูมิเนียม เหล็ก เป็นวัตถุที่นำความร้อนได้ดี จึงถูกนำมาทำภาชนะในการหุงต้มอาหาร วัตถุที่นำความร้อนไม่ดีจะถูกนำมาทำฉนวนกันความร้อน เช่น ไม้ พลาสติก แก้ว กระเบื้อง เป็นต้น
2. การถ่ายโอนความร้อนโดยการพาความร้อน เป็นการถ่ายโอนความร้อนโดยวัตถุที่เป็นตัวกลางในการพาความร้อนจะเคลื่อนที่ไปพร้อมกับความร้อนที่พาไป ตัวกลางในการพาความร้อนจึงเป็นสารที่โมเลกุลเคลื่อนที่ได้ง่าย ได้แก่ ของเหลวและแก๊ส ลมบกลมทะเลเป็นการเคลื่อนที่ของอากาศที่พาความร้อนจากบริเวณหนึ่งไปยังอีกบริเวณหนึ่ง การต้ม การนึ่ง และการทอดอาหารเป็นการทำให้อาหารสุกโดยการพาความร้อน
3. การถ่ายโอนความร้อนโดยการแผ่รังสีความร้อน เป็นการถ่ายโอนความร้อนโดยไม่ต้องอาศัยตัวกลาง เช่น การแผ่รังสีความร้อนจากดวงอาทิตย์มายังโลก การแผ่รังสีความร้อนจากเตาไฟไปยังอาหารที่ปิ้งย่างบนเตาไฟ เป็นต้น

สมดุลความร้อน
สมดุลความร้อน หมายถึง ภาวะที่สารที่มีอุณหภูมิต่างกันสัมผัสกัน และถ่ายโอนความร้อนจนกระทั่งสารทั้งสองมีอุณหภูมิเท่ากัน (และหยุดการถ่ายโอนความร้อน) เช่น การผสมน้ำร้อนกับน้ำเย็นเข้าด้วยกัน น้ำร้อนจะถ่ายโอนพลังงานความร้อนให้กับน้ำเย็น และเมื่อน้ำที่ผสมมีอุณหภูมิเท่ากัน การถ่ายโอนความร้อนจึงหยุด

การดูดกลืนความร้อนของวัตถุ
วัตถุทุกชนิดสามารถดูดกลืนพลังงานรังสี การดูดกลืนพลังงานรังสีของวัตถุเรียกว่า "การดูดกลืนความร้อน" จากการค้นพบของนักวิทยาศาสตร์พบว่า วัตถุที่มีผิวนอกสีดำทึบหรือสีเข้ม จะดูดกลืนความร้อนได้ดี วัตถุที่มีผิวนอกสีขาวหรือสีอ่อนจะดูดกลืน ความร้อนได้ไม่ดี
ในทำนองตรงกันข้าม วัตถุที่มีความร้อนทุกชนิดสามารถคายความร้อนได้เช่นกัน โดยวัตถุที่มีผิวนอกสีดำจะคายความร้อนได้ดี และวัตถุที่มีผิวนอกขาวจะคายความร้อนได้ไม่ดี
ในชีวิตประจำวันใช้ประโยชน์จากสมบัติของการดูดกลืนความร้อนและการคายความร้อนของวัตถุในการเลือกสีทาอุปกรณ์เครื่องใช้ต่างๆ เช่น ชุดนักดับเพลิงมีสีสว่างและแวววาวเพื่อไม่ให้รับพลังงานความร้อนมากเกินไป บ้านเรือนที่อยู่อาศัยในเขตร้อนนิยมทาด้วยสีขาว เป็นต้น

การขยายตัวของวัตถุ
วัตถุบางชนิดจะขยายตัวเมื่อได้รับความร้อนและจะหดตัวเมื่อคายความร้อน การขยายตัวของวัตถุเป็นสมบัติเฉพาะตัวของวัตถุ อัตราส่วนระหว่างขนาดของวัตถุที่เปลี่ยนแปลงไปกับขนาดเดิมของวัตถุต่ออุณหภูมิที่เปลี่ยนแปลง เรียกว่า "สัมประสิทธิ์ของการขยายตัว" วัตถุใดที่มีสัมประสิทธิ์ของการขยายตัวมากจะขยายตัวได้มากกว่าวัตถุที่มีสัมประสิทธิ์การขยายตัวน้อย เช่น ที่อุณหภูมิ 25 องศาเซลเซียส และความดันบรรยากาศเดียวกัน สังกะสี ตะกั่ว อะลูมิเนียม จะขยายตัวได้มากไปน้อย ตามลำดับ
ความรู้เรื่องการขยายตัวของวัตถุเมื่อได้รับความร้อนถูกนำไปใช้ประโยชน์อย่างกว้างขวาง เช่น การเว้นรอยต่อของรางรถไฟ การเว้นช่องว่างของหัวสะพาน การประดิษฐ์เทอร์มอมิเตอร์ และการติดตั้งเทอร์มอสแตตไฟฟ้า เพื่อใช้ควบคุมระดับอุณหภูมิของเครื่องใช้ไฟฟ้า เป็นต้น


ที่มา : :  http://www.maceducation.com/e-knowledge/2412212100/18.htm





 ตอบ 4.
วิเคราะห์ข้อมูล : : การเกิดปฏิกิริยาเคมี
    
ถ้านักเรียนสังเกตรอบๆตัวเรา จะพบว่ามีการเปลี่ยนแปลงเกิดขึ้นตลอดเวลา เราจะรู้ได้อย่างไรว่าการเปลี่ยนแปลงใด เป็นการเกิดปฏิกิริยาเคมี ... มีข้อสังเกตในการเกิดปฏิกิริยาเคมี คือจะต้องมีสารใหม่เกิดขึ้นเสมอ สารใหม่ที่เกิดขึ้นจะต้องมีสมบัติเปลี่ยนไปจากสารเดิม... เช่น การเผาไหม้ของวัตถุที่เป็นเชื้อเพลิง การย่อยอาหารในกระเพาะอาหาร การสึกกร่อนของอาคารบ้านเรือน การบูดเน่าของอาหาร เป็นต้น

  ปฏิริยาเคมีคืออะไร
   
ปฏิกิริยาเคมี  หมายถึง  การเปลี่ยนแปลงที่เกิดขึ้นกับสารแล้วส่งผลให้ได้สารใหม่ที่มีคุณสมบัติเปลี่ยนไปจากเดิม โดยในการเกิดปฏิกิริยาเคมี จะต้องเกิดจากสารตั้งต้น (reactant) ทำปฏิกิริยากัน แล้วเกิดเป็นสารใหม่ เรียกว่า ผลิตภัณฑ์ (product)

  ปฏิกิริยาเคมีแบ่งออกได้  5  ชนิด ได้แก่     1. ปฏิกิริยาการรวมตัว                         A +Z         ------->           AZ

     2.
ปฏิกิริยาการสลายตัว                       AZ            ------->           A +Z

     3.
ปฏิกิริยาการแทนที่เชิงเดี่ยว             A + BZ       ------->           AZ + B

     4.
ปฏิกิริยาการแทนที่เชิงคู่                  AX+BZ       ------->           AZ + BX

      5.
ปฏิกิริยาสะเทิน                            HX+BOH     ------->          BX + HOH
 
  สังเกตได้อย่างไรว่าการเปลี่ยนแปลงเหล่านั้นมีปฏิกิริยาเคมีเกิดขึ้นเราสามารสังเกตได้ว่ามีปฏิกิริยาเคมีเกิดขึ้นโดยสังเกตสิ่งต่อไปนี้
   
มีฟองแก๊ส
    มีตะกอน
    สีของสารเปลี่ยนไป  
    อุณหภูมิเพิ่มขึ้นหรือลดลง  พลังงานกับการเกิดปฏิกิริยาเคมี      ในการเกิดปฏิกิริยาเคมี นอกจากจะมีผลิตภัณฑ์ซึ่งเป็นสารใหม่เกิดขึ้นแล้ว จะต้องมีพลังงานเกี่ยวข้องด้วยเสมอ เช่น การเผาไหม้ของเชื้อเพลิง มักจะให้พลังงานความร้อน พลังงานแสง หรือพลังงานชนิดอื่นเป็นผลพลอยได้ การเผาผลาญอาหารในร่างกายของเรา ก็มีพลังงานเกิดขึ้น เราจึงสามารถนำพลังงานจากการเผาผลาญอาหารมาใช้ในการดำรงชีวิต เป็นต้น

ที่มา : :  http://www.tps.ac.th/~narin/basicchem/index_files/page0013.htm




 ตอบ 2.
วิเคราะห์ข้อมูล : : จากผลการทดลอง และความรู้ที่ได้ศึกษามาแล้ว สามารถสรุปปัจจัยที่มีผลต่ออัตราการเกิดปฏิกิริยาเคมีได้ดังนี้
1.       ปฏิกิริยาเคมีส่วนใหญ่เมื่อเพิ่มความเข้มข้นของสารตั้งต้นปฏิกิริยาจะเกิดเร็วขึ้น และเมื่อลดความเข้มข้นของสารตั้งต้นปฏิกิริยาจะเกิดช้าลง
2.       สารที่มีพื้นที่ผิวมากจะเกิดปฏิกิริยาเคมีเร็วกว่าสารที่มีพื้นที่ผิวน้อย
3.       การเพิ่มอุณหภูมิจะทำให้ปฏิกิริยาเกิดเร็วขึ้นและการลดอุณหภูมิจะทำให้ปฏิกิริยาเกิดช้าลง
4.       ตัวเร่งปฏิกิริยาจะทำให้ปฏิกิริยาเคมีเกิดเร็วขึ้นและตัวหน่วงปฏิกิริยาจะทำให้ปฏิกิริยาเคมีเกิดช้าลง

ที่มา : :  http://www.thaigoodview.com/library/studentshow/2549/nongkhai/kudbongphittayakarn/p04.htm




 ตอบ 4.
วิเคราะห์ข้อมูล : :

A
     X
Z

A = เลขมวล = จำนวนโปรตอน + นิวตรอน
X = สัญลักษณ์ของธาตุ
Z = เลขอะตอม = จำนวนโปรตอน
    1. เลขมวล (Mass Number) คือ เลขที่แสดงจำนวนโปรตอนและนิวตรอน
    2. เลขอะตอม (Atomic Number) คือ จำนวนโปรตอนภายในอะตอม
ไอโซโทป
คือ ธาตุชนิดเดียวกัน ที่มีเลขอะตอมเท่ากันแต่เลขมวลต่างกัน หรือธาตุที่มีจำนวนโปรตอนเท่ากัน แต่นิวตรอนต่างกัน
        การหาไอโซโทป โดยใช้เครื่องมือที่เรียกว่า " แมสสเปกโตรมิเตอร์ "  วิธีการ คือ เร่งให้ไอออนบวกผ่านช่องแคบ แล้วผ่านเข้าไปในสนามแม่เหล็ก  ทิศทางของอนุภาคจะเบนโค้ง การเบนได้มากน้อยเพียงใดขึ้นอยู่กับมวลและประจุ
 * ถ้าประจุเท่ากัน  อนุภาคที่มีเลขมวลเบาจะเบนไปมากกว่าอนุภาคที่มีมวลหนัก
 * ถ้ามวลเท่ากัน   อนุภาคที่มีประจุมากจะเบนไปมากกว่าอนุภาคที่มีประจุน้อย  


ที่มา : :  http://www.thaigoodview.com/library/teachershow/phayao/phuangphet_k/atommic/sec03p01.html






ตอบ 1.
วิเคราะห์ข้อมูล  : : ทุกอะตอมประกอบด้วยอนุภาคที่สำคัญคือ    โปรตอน,  นิวตรอน  และอิเล็กตรอน   โดยมีโปรตอนกับนิวตรอนอยู่ภายในนิวเคลียส   นิวเคลียสนี้จะครอบครองเนื้อที่ภายในอะตอมเพียงเล็กน้อย   และมีอิเล็กตรอนวิ่งรอบๆ นิวเคลียสด้วยความเร็วสูง   คล้ายกับมีกลุ่มประจุลบปกคลุมอยู่โดยรอบ
' อิเล็กตรอน (Electron) สัญลักษณ์ e - มีแระจุลบ และมีมวลน้อยมาก
' โปรตอน สัญลักษณ์ p + มีประจุเป็นบวก และมีมวลมากกว่า อิเล็กตรอน ( เกือบ 2,000 เท่า)
' นิวตรอน สัญลักษณ์ n มีประจุเป็นศูนย์ และมีมวลมากพอๆ กับโปรตอน


ที่มา : :  http://nakhamwit.ac.th/pingpong_web/AtomStruct.htm








 ตอบ 3.
วิเคราะห์ข้อมูล : : สัญลักษณ์นิวเคลียร์ (nuclear symbol)  เป็นสัญลักษณ์ที่แสดงจำนวนอนุภาคมูลฐานของอะตอมด้วยเลขมวลและเลขอะตอม เขียนแทนด้วยสัญลักษณ์ดังนี้
A
   X
 Z
 
โดยที่  X  คือ  สัญลักษณ์ธาตุ
            Z  คือ  เลขอะตอม (atomic number) เป็นจำนวนโปรตอนในนิวเคลียส
            A  คือ  เลขมวล (mass number) เป็นผลบวกของจำนวนโปรตอนกับนิวตรอน
สูตร   A = Z + N

ที่มา : : http://www.skoolbuz.com/library/content/2390





 ตอบ 2.
วิเคราะห์ข้อมูล : : 
ไอออน คือ อะตอม, หรือกลุ่มอะตอม ที่มีประจุสุทธิทางไฟฟ้าเป็นบวก หรือเป็นลบ ไอออนที่มีประจุลบ จะมีอิเล็กตรอนในชั้นอิเล็กตรอน (electron shell) มากกว่าที่มันมีโปรตอนในนิวเคลียส เราเรียกไอออนชนิดนี้ว่า แอนไอออน (anion) เพราะมันถูกดูดเข้าหาขั้วแอโนด (anode) ส่วนไอออนที่มีประจุบวก จะมีอิเล็กตรอนน้อยกว่าโปรตอน เราเรียกว่า แคทไอออน (cation) เพราะมันถูกดูดเข้าหาขั้วแคโทด (cathode) กระบวนการแปลงเป็นไออน และสภาพของการถูกทำให้เป็นไออน เรียกว่า "ไอออไนเซชัน" (ionization) ส่วนกระบวนการจับตัวระหว่างไอออนและอิเล็กตรอนเข้าด้วยกัน จนเกิดเป็นอะตอมที่ดุลประจุแล้วมีความเป็นกลางทางไฟฟ้า เรียกว่า recombination แอนไอออนแบบโพลีอะตอมิก ซึ่งมีออกซิเจนประกอบอยู่ บางครั้งก็เรียกว่า "ออกซีแอนไอออน" (oxyanion)
ไอออนแบบอะตอมเดียวและหลายอะตอม จะเขียนระบุด้วยเครื่องหมายประจุรวมทางไฟฟ้า และจำนวนอิเล็กตรอนที่สูญไปหรือได้รับมา (หากมีมากกว่า 1 อะตอม) ตัวอย่างเช่น H+, SO32-
กลุ่มไอออนที่ไม่แตกตัวในน้ำ หรือแม้ก๊าส ที่มีส่วนของอนุภาคที่มีประจุ จะเรียกว่า พลาสมา (plasma) ซึ่งถือเป็น สถานะที่ 4 ของสสาร เพราะคุณสมบัติของมันนั้น แตกต่างไปจากของแข็ง ของเหลว หรือก๊าซ

ที่มา : :  http://th.wikipedia.org/wiki/%E0%B9%84%E0%B8%AD%E0%B8%AD%E0%B8%AD%E0%B8%99




 ตอบ 1.
วิเคราะห์ข้อมูล : : อะตอม (atomic number) หมายถึงจำนวนโปรตอนในนิวเคลียสของธาตุนั้นๆ หรือหมายถึงจำนวนอิเล็กตรอนที่วิ่งวนรอบนิวเคลียสของอะตอมที่เป็นกลาง เช่น ไฮโดรเจน (H) มีเลขอะตอมเท่ากับ 1
เลขอะตอม เดิมใช้หมายถึงลำดับของธาตุในตารางธาตุ เมื่อ ดมิทรี อีวาโนวิช เมนเดลีเยฟ (Dmitry Ivanovich Mendeleev) ทำการจัดกลุ่มของธาตุตามคุณสมบัติร่วมทางเคมีนั้น เขาได้สังเกตเห็นว่าเมื่อเรียงตามเลขมวลนั้น จะเกิดความไม่ลงรอยกันของคุณสมบัติ เช่น ไอโอดีน (Iodine) และเทลลูเรียม (Tellurium) นั้น เมื่อเรียกตามเลขมวล จะดูเหมือนอยู่ผิดตำแหน่งกัน ซึ่งเมื่อสลับที่กันจะดูเหมาะสมกว่า ดังนั้นเมื่อเรียงธาตุในตารางธาตุตามเลขอะตอม ตารางจะเรียงตามคุณสมบัติทางเคมีของธาตุ เลขอะตอมนี้ถึงแม้โดยประมาณ แล้วจะแปรผันตรงกับมวลของอะตอม แต่ในรายละเอียดแล้วเลขอะตอมนี้จะสะท้อนถึงคุณสมบัติของธาตุ
เฮนรี โมสลีย์ (Henry Moseley) ได้ค้นพบความสัมพันธ์ระหว่างการกระเจิงของ สเปกตรัมของรังสีเอ็กซ์ (x-ray)ของธาตุ และตำแหน่งที่ถูกต้องบนตารางธาตุ ในปี ค.ศ. 1913 ซึ่งต่อมาได้ถูกอธิบายด้วยเลขอะตอม ซึ่งอธิบายถึงปริมาณประจุในนิวเคลียส หรือ จำนวนโปรตอนนั่นเอง ซึ่งจำนวนของโปรตอนนี้เป็นตัวกำหนดคุณสมบัติทางเคมีของธาตุ

ที่มา : :  http://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%A5%E0%B8%82%E0%B8%AD%E0%B8%B0%E0%B8%95%E0%B8%AD%E0%B8%A1



 ตอบ 3.
วิเคราะห์ข้อมูล : : 
ธาตุกัมมันตรังสี  คือธาตุพลังงานสูงกลุ่มหนึ่งที่สามารถแผ่รังสี แล้วกลายเป็นอะตอมของธาตุใหม่ได้ มีประวัติการค้นพบดังนี้
  1. รังสีเอกซ์ ถูกค้นพบโดย Conrad Röntgen อย่างบังเอิญเมื่อปี ค.ศ. 1895
  2. ยูเรเนียม ค้นพบโดย Becquerel เมื่อปี ค.ศ. 1896 โดยเมื่อเก็บยูเรเนียมไว้กับฟิล์มถ่ายรูป ในที่มิดชิด ฟิล์มจะมีลักษณะ เหมือนถูกแสง จึงสรุปได้ว่าน่าจะมีการแผ่รังสีออกมาจากธาตุยูเรเนียม เขาจึงตั้งชื่อว่า Becquerel Radiation
  3. พอโลเนียม ถูกค้นพบและตั้งชื่อโดย มารี กูรี ตามชื่อบ้านเกิด (โปแลนด์) เมื่อปี ค.ศ. 1898 หลังจากการสกัดเอายูเรเนียมออกจาก Pitchblende หมดแล้ว แต่ยังมีการแผ่รังสีอยู่ สรุปได้ว่ามีธาตุอื่นที่แผ่รังสีได้อีกแฝงอยู่ใน Pitchblende นอกจากนี้ กูรียังได้ตั้งชื่อเรียกธาตุที่แผ่รังสีได้ว่า ธาตุกัมมันตรังสี และเรียกรังสีนี้ว่า กัมมันตภาพรังสี
  4. เรเดียม ถูกตั้งชื่อไว้เมื่อปี ค.ศ. 1898 หลังจากสกัดเอาพอโลเนียมออกจากพิตช์เบลนด์หมดแล้ว พบว่ายังคงมีการแผ่รังสี จึงสรุปว่ามีธาตุอื่นที่แผ่รังสีได้อีกใน Pitchblende ในที่สุดกูรีก็สามารถสกัดเรเดียมออกมาได้จริง ๆ จำนวน 0.1 กรัม ในปี ค.ศ. 1902
ส่วนรังสีที่แผ่ออกมาจากธาตุนั้น แบ่งเป็น 3 ชนิดคือ
  1. รังสีแอลฟา (สัญลักษณ์: α) คุณสมบัติ เป็นนิวเคลียสของอะตอมฮีเลียม (4 2He) มี p+ และ n อย่างละ 2 อนุภาค ประจุ +2 เลขมวล 4 อำนาจทะลุทะลวงต่ำ เบี่ยงเบนในสนามไฟฟ้าเข้าหาขั้วลบ
  2. รังสีบีตา (สัญลักษณ์: β) คุณสมบัติ เหมือน e- อำนาจทะลุทะลวงสูงกว่า α 100 เท่า ความเร็วใกล้เสียง เบี่ยงเบนในสนามไฟฟ้าเข้าหาขั้วบวก
  3. รังสีแกมมา (สัญลักษณ์: γ) คุณสมบัติเป็นคลื่นแม่เหล็กไฟฟ้า (Electromagnetic Wave) ที่มีความยาวคลื่นสั้นมากไม่มีประจุและไม่มีมวล อำนาจทะลุทะลวงสูงมาก ไม่เบี่ยงเบนในสนามไฟฟ้า เกิดจากการที่ธาตุแผ่รังสีแอลฟาและแกมมาแล้วยังไม่เสถียร มีพลังงานสูง จึงแผ่เป็นคลื่นแม่เหล็กไฟฟ้าเพื่อลดระดับพลังงาน
ที่มา : : http://th.wikipedia.org/wiki/%E0%B8%98%E0%B8%B2%E0%B8%95%E0%B8%B8%E0%B8%81%E0%B8%B1%E0%B8%A1%E0%B8%A1%E0%B8%B1%E0%B8%99%E0%B8%95%E0%B8%A3%E0%B8%B1%E0%B8%87%E0%B8%AA%E0%B8%B5